skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Welsch, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract One of the main theories for heating of the solar corona is based on the idea that solar convection shuffles and tangles magnetic field lines to make many small-scale current sheets that, via reconnection, heat coronal loops. S. K. Tiwari et al. present evidence that, besides depending on loop length and other factors, the brightness of a coronal loop depends on the field strength in the loop’s feet and the freedom of convection in the feet. While it is known that strong solar magnetic fields suppress convection, the decrease in the speed of horizontal advection of magnetic flux with increasing field strength has not been quantified before. We quantify that trend by analyzing 24 hr of Helioseismic Magnetic Imager-SHARP vector magnetograms of each of six sunspot-active regions and their surroundings. Using Fourier local correlation tracking, we estimate the horizontal advection speed of the magnetic flux at each pixel in which the vertical component of the magnetic field strength (Bz) is well above (≥150 G) noise level. We find that the average horizontal advection speed of magnetic flux steadily decreases asBzincreases, from 110  ±  3 m s−1for 150 G (in network and plage) to 10  ±  4 m s−1for 2500 G (in sunspot umbra). The trend is well fit by a fourth-degree polynomial. These results quantitatively confirm the expectation that magnetic flux advection is suppressed by increasing magnetic field strength. The presented quantitative relation should be useful for future MHD simulations of coronal heating. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Abstract Violent solar flares and coronal mass ejections (CMEs) are magnetic phenomena. However, how magnetic fields reconnecting in the flare differ from nonflaring magnetic fields remains unclear owing to the lack of studies of the flare magnetic properties. Here we present a first statistical study of flaring (highlighted by flare ribbons) vector magnetic fields in the photosphere. Our systematic approach allows us to describe the key physical properties of solar flare magnetism, including distributions of magnetic flux, magnetic shear, vertical current, and net current over flaring versus nonflaring parts of the active region (AR), and compare these with flare/CME properties. Our analysis suggests that while flares are guided by the physical properties that scale with AR size, like the total amount of magnetic flux that participates in the reconnection process and the total current (extensive properties), CMEs are guided by mean properties, like the fraction of the AR magnetic flux that participates (intensive property), with little dependence on the amount of shear at the polarity inversion line (PIL) or the net current. We find that the nonneutralized current is proportional to the amount of shear at the PIL, providing direct evidence that net vertical currents are formed as a result of any mechanism that could generate magnetic shear along the PIL. We also find that eruptive events tend to have smaller PIL fluxes and larger magnetic shears than confined events. Our analysis provides a reference for more realistic solar and stellar flare models. The database is available online and can be used for future quantitative studies of flare magnetism. 
    more » « less
  3. null (Ed.)